Reproducible Research: R Markdown vs Jupyter

reproducible-research
rmarkdown
quarto
How R’s literate programming tools provide superior reproducible research capabilities compared to Python’s Jupyter notebooks
Published

June 25, 2025

1 Introduction

Reproducible research is essential in modern data science, and R’s literate programming tools—R Markdown and Quarto—provide superior capabilities compared to Python’s Jupyter notebooks. This post explores why R’s approach to reproducible research is more powerful and flexible.

2 Literate Programming Philosophy

2.1 R’s Integrated Approach

R Markdown and Quarto embody the literate programming philosophy by seamlessly integrating:

  • Code execution with narrative text
  • Dynamic output generation
  • Multiple output formats from a single source
  • Version control integration
  • Citation management

2.2 Python’s Fragmented Ecosystem

Jupyter notebooks, while popular, have limitations:

  • Limited output formats (primarily HTML)
  • Version control challenges with JSON format
  • Less integration with publishing workflows
  • Manual citation management

3 R Markdown: The Gold Standard

3.1 Simple R Markdown Example

Code
# Load libraries
library(dplyr)
library(ggplot2)

# Load and examine data
data(mtcars)
head(mtcars)
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

Analysis Results:

The dataset contains information about 32 automobiles, including fuel efficiency (mpg), weight (wt), and number of cylinders (cyl).

Code
# Create visualization
ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +
  geom_boxplot(fill = "lightblue", alpha = 0.7) +
  labs(
    title = "Fuel Efficiency by Cylinder Count",
    x = "Number of Cylinders",
    y = "Miles per Gallon"
  ) +
  theme_minimal()

Fuel efficiency distribution by cylinder count

3.2 Statistical Analysis

Code
# Perform statistical test
model <- lm(mpg ~ wt + cyl, data = mtcars)
summary_model <- summary(model)

# Display results in formatted table
library(knitr)
kable(summary_model$coefficients, 
      digits = 3,
      caption = "Linear Regression Results")
Linear Regression Results
Estimate Std. Error t value Pr(>|t|)
(Intercept) 39.686 1.715 23.141 0.000
wt -3.191 0.757 -4.216 0.000
cyl -1.508 0.415 -3.636 0.001

4 Quarto: The Next Generation

4.1 Advanced Quarto Features

---
title: "Advanced Statistical Analysis"
format: 
  html:
    toc: true
    code-fold: true
    code-tools: true
  pdf:
    documentclass: article
    geometry: margin=1in
  docx:
    reference-doc: template.docx
execute:
  echo: true
  eval: true
  warning: false
  error: false
bibliography: references.bib
---

4.2 Cross-References and Citations

Code
ggplot(mtcars, aes(x = wt, y = mpg)) +
  geom_point() +
  geom_smooth(method = "lm") +
  labs(
    title = "Fuel Efficiency vs Weight",
    x = "Weight (1000 lbs)",
    y = "Miles per Gallon"
  )

Figure 1: Scatter plot with regression line

As shown in Figure 1, there is a strong negative relationship between weight and fuel efficiency.

5 Jupyter’s Limitations

5.1 Version Control Challenges

# Jupyter notebook cell
import pandas as pd
import matplotlib.pyplot as plt

# This creates a JSON file that's hard to diff
data = pd.read_csv('mtcars.csv')
data.head()

Jupyter notebooks store metadata in JSON format, making them difficult to version control effectively.

5.2 Limited Output Formats

# Jupyter primarily outputs HTML
# Converting to PDF or Word requires additional tools
# No built-in citation management

6 Advanced R Markdown Features

6.1 Parameterized Reports

---
title: "Analysis Report"
params:
  dataset: "mtcars"
  response_var: "mpg"
  predictor_vars: ["wt", "cyl"]
---
Code
# Example of parameterized analysis
# In a real parameterized report, params would be defined in YAML header
dataset_name <- "mtcars"
response_var <- "mpg"
predictor_vars <- c("wt", "cyl")

# Use parameters in analysis
data <- get(dataset_name)
response <- data[[response_var]]
predictors <- data[predictor_vars]

# Dynamic analysis
formula_str <- paste(response_var, "~", paste(predictor_vars, collapse = "+"))
model <- lm(as.formula(formula_str), data = data)

# Display results
summary(model)

Call:
lm(formula = as.formula(formula_str), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.2893 -1.5512 -0.4684  1.5743  6.1004 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  39.6863     1.7150  23.141  < 2e-16 ***
wt           -3.1910     0.7569  -4.216 0.000222 ***
cyl          -1.5078     0.4147  -3.636 0.001064 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.568 on 29 degrees of freedom
Multiple R-squared:  0.8302,    Adjusted R-squared:  0.8185 
F-statistic: 70.91 on 2 and 29 DF,  p-value: 6.809e-12

6.2 Interactive Documents

Code
library(plotly)
library(ggplot2)

# Create interactive plot
p <- ggplot(mtcars, aes(x = wt, y = mpg, color = factor(cyl))) +
  geom_point() +
  theme_minimal()

ggplotly(p)

7 Publishing Workflows

7.1 R’s Publishing Ecosystem

7.2 Academic Publishing

---
title: "Statistical Analysis of Automotive Data"
author: "Dr. Jane Smith"
date: "2025-07-14"
format:
  pdf:
    documentclass: article
    geometry: margin=1in
    fontsize: 11pt
    linestretch: 1.5
    bibliography: references.bib
    csl: apa.csl
---

8 Code Chunk Options

8.1 R’s Flexible Code Control

Code
# This code will be executed, cached, and displayed
# with specific figure dimensions

8.2 Python’s Limited Options

# Jupyter has fewer code cell options
# No built-in caching
# Limited figure control
# No easy way to suppress warnings/messages

9 Collaboration and Sharing

9.1 R’s Collaborative Features

Code
# R Markdown integrates with:
# - Git for version control
# - GitHub for collaboration
# - RStudio Connect for sharing
# - Bookdown for multi-chapter documents

9.2 Team Workflows

---
title: "Team Analysis Report"
author: 
  - name: "Data Science Team"
    affiliation: "Company Inc."
format:
  html:
    toc: true
    toc-depth: 3
    number-sections: true
    code-fold: true
execute:
  echo: true
  eval: true
  warning: false
  error: false
---

10 Performance Comparison

Feature R Markdown/Quarto Jupyter Notebooks
Output Formats HTML, PDF, Word, PowerPoint Primarily HTML
Version Control Excellent (text-based) Poor (JSON-based)
Citations Built-in support Manual management
Cross-references Native support Limited
Parameters Built-in Requires nbparameterise
Publishing Multiple platforms Limited options
Academic Writing Excellent Basic
Code Options Extensive Limited

11 Conclusion

R’s reproducible research tools provide:

  • Multiple output formats from a single source
  • Excellent version control integration
  • Built-in citation management
  • Academic publishing capabilities
  • Parameterized reports for automation
  • Interactive elements with Shiny integration

While Jupyter notebooks are popular for exploration, R Markdown and Quarto provide superior capabilities for reproducible research and professional publishing.


Next: Academic Research: R’s Dominance in Statistics